首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:The integral membrane enzyme PagP alternates between two dynamically distinct states
  • 本地全文:下载
  • 作者:Peter M. Hwang ; Russell E. Bishop ; Lewis E. Kay
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2004
  • 卷号:101
  • 期号:26
  • 页码:9618-9623
  • DOI:10.1073/pnas.0402324101
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:PhoPQ-activated gene P (PagP) is an integral membrane enzyme that transfers the sn-1 palmitate chain from phospholipid to lipopolysaccharide in Gram-negative bacteria. A recent x-ray crystallographic study established that the sn-1 palmitate binds within a long cavity at the center of the PagP {beta} barrel. The high mobility required to permit substrate entry into the central core of the barrel contrasts with the need to assemble a well defined structure in the peripheral loops, where many key catalytic residues are located. To gain insight into how dynamics relate to the function of PagP, the enzyme was reconstituted into CYFOS-7, a detergent that supports enzymatic activity. Under these conditions, PagP exists in equilibrium between two states, relaxed (R) and tense (T). The kinetics and thermodynamics of the interchange have been investigated by 1H-15N NMR spectroscopy, with {Delta}H = -10.7 kcal/mol and {Delta}S = -37.5 cal/mol{middle dot}K for the R[->] T transition. A comparison of chemical shifts between the two states indicates that major structural changes occur in the large extracellular L1 loop and adjacent regions of the {beta} barrel. In addition to the R,T interconversion, other conformational exchange processes are observed in the R state, showing it to be quite flexible. Thus a picture emerges in which substrate entry is facilitated by the mobility of the R state, whereas the relatively rigid T state adopts a radically different conformation in a region of the protein known to be essential for catalysis. The ability to switch between dynamically distinct states may be a key feature of the catalytic cycle of PagP.
国家哲学社会科学文献中心版权所有