首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:Disruption of communication between peripheral and central trigeminovascular neurons mediates the antimigraine action of 5HT1B/1D receptor agonists
  • 本地全文:下载
  • 作者:Dan Levy ; Moshe Jakubowski ; Rami Burstein
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2004
  • 卷号:101
  • 期号:12
  • 页码:4274-4279
  • DOI:10.1073/pnas.0306147101
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Triptans are 5HT1B/1D receptor agonists commonly prescribed for migraine headache. Although originally designed to constrict dilated intracranial blood vessels, the mechanism and site of action by which triptans abort the migraine pain remain unknown. We showed recently that sensitization of peripheral and central trigeminovascular neurons plays an important role in the pathophysiology of migraine pain. Here we examined whether the drug sumatriptan can prevent and/or suppress peripheral and central sensitization by using single-unit recording in our animal model of intracranial pain. We found that sumatriptan effectively prevented the induction of sensitization (i.e., increased spontaneous firing; increased neuronal sensitivity to intracranial mechanical stimuli) in central trigeminovascular neurons (recorded in the dorsal horn), but not in peripheral trigeminovascular neurons (recorded in the trigeminal ganglion). After sensitization was established in both types of neuron, sumatriptan effectively normalized intracranial mechanical sensitivity of central neurons, but failed to reverse such hypersensitivity in peripheral neurons. In both the peripheral and central neurons, the drug failed to attenuate the increased spontaneous activity established during sensitization. These results suggest that neither peripheral nor central trigeminovascular neurons are directly inhibited by sumatriptan. Rather, triptan action appears to be exerted through presynaptic 5HT1B/1D receptors in the dorsal horn to block synaptic transmission between axon terminals of the peripheral trigeminovascular neurons and cell bodies of their central counterparts. We therefore suggest that the analgesic action of triptan can be attained specifically in the absence, but not in the presence, of central sensitization.
国家哲学社会科学文献中心版权所有