首页    期刊浏览 2025年02月28日 星期五
登录注册

文章基本信息

  • 标题:The low-spin heme of cytochrome c oxidase as the driving element of the proton-pumping process
  • 本地全文:下载
  • 作者:Tomitake Tsukihara ; Kunitoshi Shimokata ; Yukie Katayama
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2003
  • 卷号:100
  • 期号:26
  • 页码:15304-15309
  • DOI:10.1073/pnas.2635097100
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Mitochondrial cytochrome c oxidase plays an essential role in aerobic cellular respiration, reducing dioxygen to water in a process coupled with the pumping of protons across the mitochondrial inner membrane. An aspartate residue, Asp-51, located near the enzyme surface, undergoes a redox-coupled x-ray structural change, which is suggestive of a role for this residue in redox-driven proton pumping. However, functional or mechanistic evidence for the involvement of this residue in proton pumping has not yet been obtained. We report that the Asp-51 [->] Asn mutation of the bovine enzyme abolishes its proton-pumping function without impairment of the dioxygen reduction activity. Improved x-ray structures (at 1.8/1.9-A resolution in the fully oxidized/reduced states) show that the net positive charge created upon oxidation of the low-spin heme of the enzyme drives the active proton transport from the interior of the mitochondria to Asp-51 across the enzyme via a water channel and a hydrogen-bond network, located in tandem, and that the enzyme reduction induces proton ejection from the aspartate to the mitochondrial exterior. A peptide bond in the hydrogen-bond network critically inhibits reverse proton transfer through the network. A redox-coupled change in the capacity of the water channel, induced by the hydroxyfarnesylethyl group of the low-spin heme, suggests that the channel functions as an effective proton-collecting region. Infrared results indicate that the conformation of Asp-51 is controlled only by the oxidation state of the low-spin heme. These results indicate that the low-spin heme drives the proton-pumping process.
国家哲学社会科学文献中心版权所有