首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Importance of low-oligomeric-weight species for prion propagation in the yeast prion system Sup35/Hsp104
  • 本地全文:下载
  • 作者:Saravanakumar Narayanan ; Benjamin Bösl ; Stefan Walter
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2003
  • 卷号:100
  • 期号:16
  • 页码:9286-9291
  • DOI:10.1073/pnas.1233535100
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:The [PSI+] determinant of Saccharomyces cerevisiae, consisting of the cytosolic translation termination factor Sup35, is a prion-type genetic element that induces an inheritable conformational change and converts the Sup35 protein into amyloid fibers. The molecular chaperone Hsp104 is required to maintain self-replication of [PSI+]. We observe in vitro that addition of catalytic amounts of Hsp104 to the prion-determining region of the NM domain of Sup35, Sup355-26, results in the dissociation of oligomeric Sup35 into monomeric species. Several intermediates of Sup355-26 could be detected during this process. Strong interactions are found between Hsp104 and hexameric/tetrameric Sup355-26, whereas the intermediate and monomeric "release" forms show a decreased affinity with respect to Hsp104, as monitored by saturation transfer difference and diffusion-ordered NMR spectroscopic experiments. Interactions are mediated mostly by the side chains of Gln, Asn, and Tyr residues in Sup355-26. No interaction can be detected between Hsp104 and higher oligomeric states ([≥]8) of Sup355-26. Taking into account the fact that Hsp104 is required for maintenance of [PSI+], we suggest that low-oligomeric-weight species of Sup35 are important for prion propagation in yeast.
国家哲学社会科学文献中心版权所有