首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Reverse engineering gene networks using singular value decomposition and robust regression
  • 本地全文:下载
  • 作者:M. K. Stephen Yeung ; Jesper Tegnér ; James J. Collins
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2002
  • 卷号:99
  • 期号:9
  • 页码:6163-6168
  • DOI:10.1073/pnas.092576199
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:We propose a scheme to reverse-engineer gene networks on a genome-wide scale using a relatively small amount of gene expression data from microarray experiments. Our method is based on the empirical observation that such networks are typically large and sparse. It uses singular value decomposition to construct a family of candidate solutions and then uses robust regression to identify the solution with the smallest number of connections as the most likely solution. Our algorithm has O(log N) sampling complexity and O(N4) computational complexity. We test and validate our approach in a series of in numero experiments on model gene networks.
国家哲学社会科学文献中心版权所有