首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:Cytosolic malate dehydrogenase confers selectivity of the nucleic acid-conducting channel
  • 本地全文:下载
  • 作者:Basil Hanss ; Edgar Leal-Pinto ; Avelino Teixeira
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2002
  • 卷号:99
  • 期号:3
  • 页码:1707-1712
  • DOI:10.1073/pnas.022355499
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:We have described previously a cell surface channel that is highly selective for nucleic acids. Nucleic acid conductance is 10 pS and the channel is at least 10,000-fold more selective for oligodeoxynucleotides than any anion tested (1). Herein we provide evidence that the nucleic acid-conducting channel (NACh) is a heteromultimeric complex of at least two proteins; a 45-kDa pore-forming subunit (p45) and a 36-kDa regulatory subunit (p36). Reconstitution of p45 in planar lipid bilayers resulted in formation of a channel which gated in the absence of nucleic acid and which was more selective for anions (including oligonucleotide) than cations. This channel exhibited transitions from one level of current to another (or to the closed state); however the incidence of transitions was rare. Channel activity was not observed when p36 was reconstituted alone. Reconstitution of p36 with p45 restored nucleic acid dependence and selectivity to the channel. Protein sequence analysis identified p36 as cytosolic malate dehydrogenase (cMDH). Experiments were performed to prove that cMDH is a regulatory subunit of NACh. Selective activity was observed when p45 was reconstituted with pig heart cMDH but not with mitochondrial MDH. Both the enzyme substrate L-malate and antiserum raised against cMDH block NACh activity. These data demonstrate that a nucleic acid conducting channel is a complex of at least two proteins, p45 and cMDH. Furthermore, these data establish that cMDH confers nucleic acid selectivity of the channel.
国家哲学社会科学文献中心版权所有