期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2002
卷号:99
期号:26
页码:16928-16933
DOI:10.1073/pnas.262661399
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:To facilitate positional cloning of complex trait susceptibility loci, we are investigating methods to reduce the effort required to identify trait-associated alleles. We examined primer extension analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to screen single-nucleotide polymorphisms (SNPs) for association by using DNA pools. We tested whether this method can accurately estimate allele frequency differences between pools while maintaining the high-throughput nature of assay design, sample handling, and scoring. We follow up interesting allele frequency differences in pools by genotyping individuals. We tested DNA pools of 182, 228, and 499 individuals using 16 SNPs with minor allele frequencies 0.026-0.486 and allele frequency differences 0.001-0.108 that we had genotyped previously on individuals and 381 SNPs that we had not. Precision, as measured by the average standard deviation among 16 semidependent replicates, was 0.021 {+/-} 0.011 for the 16 SNPs and 0.018 {+/-} 0.008 for the 291/381 SNPs used in further analysis. For the 16 SNPs, the average absolute error in predicting allele frequency differences between pools was 0.009; the largest errors were 0.031, 0.028, and 0.027. We determined that compensating for unequal peak heights in heterozygotes improved precision of allele frequency estimates but had only a very minor effect on accuracy of allele frequency differences between pools. Based on these data and assuming pools of 500 individuals, we conclude that at significance level 0.05 we would have 95% (82%) power to detect population allele frequency differences of 0.07 for control allele frequencies of 0.10 (0.50).