首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Revisiting the kinetics of nitric oxide (NO) binding to soluble guanylate cyclase: The simple NO-binding model is incorrect
  • 本地全文:下载
  • 作者:David P. Ballou ; Yunde Zhao ; Philip E. Brandish
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2002
  • 卷号:99
  • 期号:19
  • 页码:12097-12101
  • DOI:10.1073/pnas.192209799
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Soluble guanylate cyclase (sGC) is a ferrous iron hemoprotein receptor for nitric oxide (NO). NO binding to the heme activates the enzyme 300-fold. sGC as isolated is five-coordinate, ferrous with histidine as the axial ligand. The NO-activated enzyme is a five-coordinate nitrosyl complex where the axial histidine bond is broken. Past studies using rapid-reaction kinetics demonstrated that both the formation of a six-coordinate intermediate and the conversion of the intermediate to the activated five-coordinate nitrosyl complex depended on the concentration of NO. A model invoking a second NO molecule as a catalyst for the conversion of the six-coordinate intermediate to the five-coordinate sGC-NO complex was proposed to explain the observed kinetic data. A recent study [Bellamy, T. C., Wood, J. & Garthwaite, J. (2002) Proc. Natl. Acad. Sci. USA 99, 507-510] concluded that a simple two-step binding model explains the results. Here we show through further analysis and simulations of previous data that the simple two-step binding model cannot be used to describe our results. Instead we show that a slightly more complex two-step binding model, where NO is used as a ligand in the first step and a catalyst in the second step, can describe our results quite satisfactorily. These new simulations combined with the previous activation data lead to the conclusion that the intermediate six-coordinate sGC-NO complex has substantial activity. The model derived from our simulations also can account for the slow deactivation of sGC that has been observed in vitro.
国家哲学社会科学文献中心版权所有