期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1992
卷号:89
期号:13
页码:6080-6084
DOI:10.1073/pnas.89.13.6080
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:The structure of a binary complex of dihydropteridine reductase [DHPR; NAD(P)H:6,7-dihydropteridine oxidoreductase, EC 1.6.99.7 ] with its cofactor, NADH, has been solved and refined to a final R factor of 15.4% by using 2.3 A diffraction data. DHPR is an alpha/beta protein with a Rossmann-type dinucleotide fold for NADH binding. Insertion of an extra threonine residue in the human enzyme is associated with severe symptoms of a variant form of phenylketonuria and maps to a tightly linked sequence of secondary-structural elements near the dimer interface. Dimerization is mediated by a four-helix bundle motif (two helices from each protomer) having an unusual right-handed twist. DHPR is structurally and mechanistically distinct from dihydrofolate reductase, appearing to more closely resemble certain nicotinamide dinucleotide-requiring flavin-dependent enzymes, such as glutathione reductase.