首页    期刊浏览 2024年12月05日 星期四
登录注册

文章基本信息

  • 标题:Modularity of a carbon-fixing protein organelle
  • 本地全文:下载
  • 作者:Walter Bonacci ; Poh K. Teng ; Bruno Afonso
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2012
  • 卷号:109
  • 期号:2
  • 页码:478-483
  • DOI:10.1073/pnas.1108557109
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Bacterial microcompartments are proteinaceous complexes that catalyze metabolic pathways in a manner reminiscent of organelles. Although microcompartment structure is well understood, much less is known about their assembly and function in vivo. We show here that carboxysomes, CO2-fixing microcompartments encoded by 10 genes, can be heterologously produced in Escherichia coli. Expression of carboxysomes in E. coli resulted in the production of icosahedral complexes similar to those from the native host. In vivo, the complexes were capable of both assembling with carboxysomal proteins and fixing CO2. Characterization of purified synthetic carboxysomes indicated that they were well formed in structure, contained the expected molecular components, and were capable of fixing CO2 in vitro. In addition, we verify association of the postulated pore-forming protein CsoS1D with the carboxysome and show how it may modulate function. We have developed a genetic system capable of producing modular carbon-fixing microcompartments in a heterologous host. In doing so, we lay the groundwork for understanding these elaborate protein complexes and for the synthetic biological engineering of self-assembling molecular structures.
  • 关键词:ribulose 1,5-bisphosphate carboxylase/oxygenase ; synthetic biology ; metabolic engineering ; self-assembly
国家哲学社会科学文献中心版权所有