期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2012
卷号:109
期号:17
页码:6620-6625
DOI:10.1073/pnas.1115835109
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Adaptive radiation is the rapid diversification of a single lineage into many species that inhabit a variety of environments or use a variety of resources and differ in traits required to exploit these. Why some lineages undergo adaptive radiation is not well-understood, but filling unoccupied ecological space appears to be a common feature. We construct a complete, dated, species-level phylogeny of the endemic Vangidae of Madagascar. This passerine bird radiation represents a classic, but poorly known, avian adaptive radiation. Our results reveal an initial rapid increase in evolutionary lineages and diversification in morphospace after colonizing Madagascar in the late Oligocene some 25 Mya. A subsequent key innovation involving unique bill morphology was associated with a second increase in diversification rates about 10 Mya. The volume of morphospace occupied by contemporary Madagascan vangas is in many aspects as large (shape variation)--or even larger (size variation)--as that of other better-known avian adaptive radiations, including the much younger Galapagos Darwin's finches and Hawaiian honeycreepers. Morphological space bears a close relationship to diet, substrate use, and foraging movements, and thus our results demonstrate the great extent of the evolutionary diversification of the Madagascan vangas.