期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2012
卷号:109
期号:16
页码:5958-5961
DOI:10.1073/pnas.1120704109
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Since the pioneering works of Carr-Purcell and Meiboom-Gill [Carr HY, Purcell EM (1954) Phys Rev 94:630; Meiboom S, Gill D (1985) Rev Sci Instrum 29:688], trains of{pi} -pulses have featured amongst the main tools of quantum control. Echo trains find widespread use in nuclear magnetic resonance spectroscopy (NMR) and imaging (MRI), thanks to their ability to free the evolution of a spin-1/2 from several sources of decoherence. Spin echoes have also been researched in dynamic decoupling scenarios, for prolonging the lifetimes of quantum states or coherences. Inspired by this search we introduce a family of spin-echo sequences, which can still detect site-specific interactions like the chemical shift. This is achieved thanks to the presence of weak environmental fluctuations of common occurrence in high-field NMR--such as homonuclear spin-spin couplings or chemical/biochemical exchanges. Both intuitive and rigorous derivations of the resulting "selective dynamical recoupling" sequences are provided. Applications of these novel experiments are given for a variety of NMR scenarios including determinations of shift effects under inhomogeneities overwhelming individual chemical identities, and model-free characterizations of chemically exchanging partners.
关键词:chemical exchange ; dynamic decoupling ; magnetic field inhomogeneity ; magnetic resonance ; quantum control