期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2009
卷号:106
期号:12
页码:4689-4694
DOI:10.1073/pnas.0811065106
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Fully understanding the mechanisms of signaling proteins such as G protein-coupled receptors (GPCRs) will require the characterization of their conformational states and the pathways connecting those states. The recent crystal structures of the {beta}2- and {beta}1-adrenergic receptors in a nominally inactive state constituted a major advance toward this goal, but also raised new questions. Although earlier biochemical observations had suggested that these receptors possessed a set of contacts between helices 3 and 6, known as the ionic lock, which was believed to form a molecular switch for receptor activation, the crystal structures lacked these contacts. The unexpectedly broken ionic lock has raised questions about the true conformation(s) of the inactive state and the role of the ionic lock in receptor activation and signaling. To address these questions, we performed microsecond-timescale molecular dynamics simulations of the {beta}2-adrenergic receptor ({beta}2AR) in multiple wild-type and mutant forms. In wild-type simulations, the ionic lock formed reproducibly, bringing the intracellular ends of helices 3 and 6 together to adopt a conformation similar to that found in inactive rhodopsin. Our results suggest that inactive {beta}2AR exists in equilibrium between conformations with the lock formed and the lock broken, whether or not the cocrystallized ligand is present. These findings, along with the formation of several secondary structural elements in the {beta}2AR loops during our simulations, may provide a more comprehensive picture of the inactive state of the {beta}-adrenergic receptors, reconciling the crystal structures with biochemical studies.