首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Nanoscale detection of organic signatures in carbonate microbialites
  • 本地全文:下载
  • 作者:Karim Benzerara ; Nicolas Menguy ; Purificación López-García
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2006
  • 卷号:103
  • 期号:25
  • 页码:9440-9445
  • DOI:10.1073/pnas.0603255103
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Microbialites are sedimentary deposits associated with microbial mat communities and are thought to be evidence of some of the oldest life on Earth. Despite extensive studies of such deposits, little is known about the role of microorganisms in their formation. In addition, unambiguous criteria proving their biogenicity have yet to be established. In this study, we characterize modern calcareous microbialites from the alkaline Lake Van, Turkey, at the nanometer scale by combining x-ray and electron microscopies. We describe a simple way to locate microorganisms entombed in calcium carbonate precipitates by probing aromatic carbon functional groups and peptide bonds. Near-edge x-ray absorption fine structure spectra at the C and N K-edges provide unique signatures for microbes. Aragonite crystals, which range in size from 30 to 100 nm, comprise the largest part of the microbialites. These crystals are surrounded by a 10-nm-thick amorphous calcium carbonate layer containing organic molecules and are embedded in an organic matrix, likely consisting of polysaccharides, which helps explain the unusual sizes and shapes of these crystals. These results provide biosignatures for these deposits and suggest that microbial organisms significantly impacted the mineralogy of Lake Van carbonates.
  • 关键词:aragonite ; biosignature ; biomineralization ; spectromicroscopy
国家哲学社会科学文献中心版权所有