期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2005
卷号:102
期号:32
页码:11266-11271
DOI:10.1073/pnas.0408771102
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:O-linked N-acetylglucosamine (O-GlcNAc) is an evolutionarily conserved modification of nuclear pore proteins, signaling kinases, and transcription factors. The O-GlcNAc transferase (OGT) catalyzing O-GlcNAc addition is essential in mammals and mediates the last step in a nutrient-sensing "hexosamine-signaling pathway." This pathway may be deregulated in diabetes and neurodegenerative disease. To examine the function of O-GlcNAc in a genetically amenable organism, we describe a putative null allele of OGT in Caenorhabditis elegans that is viable and fertile. We demonstrate that, whereas nuclear pore proteins of the homozygous deletion strain are devoid of O-GlcNAc, nuclear transport of transcription factors appears normal. However, the OGT mutant exhibits striking metabolic changes manifested in a {approx}3-fold elevation in trehalose levels and glycogen stores with a concomitant {approx}3-fold decrease in triglycerides levels. In nematodes, a highly conserved insulin-like signaling cascade regulates macronutrient storage, longevity, and dauer formation. The OGT knockout suppresses dauer larvae formation induced by a temperature-sensitive allele of the insulin-like receptor gene daf-2. Our findings demonstrate that OGT modulates macronutrient storage and dauer formation in C. elegans, providing a unique genetic model for examining the role of O-GlcNAc in cellular signaling and insulin resistance.