期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2010
卷号:107
期号:7
页码:2914-2919
DOI:10.1073/pnas.1000001107
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Dynamic solvation at binding and active sites is critical to protein recognition and enzyme catalysis. We report here the complete characterization of ultrafast solvation dynamics at the recognition site of photoantenna molecule and at the active site of cofactor/substrate in enzyme photolyase by examining femtosecond-resolved fluorescence dynamics and the entire emission spectra. With direct use of intrinsic antenna and cofactor chromophores, we observed the local environment relaxation on the time scales from a few picoseconds to nearly a nanosecond. Unlike conventional solvation where the Stokes shift is apparent, we observed obvious spectral shape changes with the minor, small, and large spectral shifts in three function sites. These emission profile changes directly reflect the modulation of chromophore's excited states by locally constrained protein and trapped-water collective motions. Such heterogeneous dynamics continuously tune local configurations to optimize photolyase's function through resonance energy transfer from the antenna to the cofactor for energy efficiency and then electron transfer between the cofactor and the substrate for repair of damaged DNA. Such unusual solvation and synergetic dynamics should be general in function sites of proteins.
关键词:function-site solvation ; ultrafast dynamics ; spectral tuning ; protein rigidity and flexibility ; femtosecond-resolved emission spectra