期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2010
卷号:107
期号:39
页码:16788-16793
DOI:10.1073/pnas.1010015107
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:[IMG]/medium/pnas.1010015107eq1.gif" ALT="Formula "> intermediates are well known in heme enzymes, but none have been characterized in the nonheme mononuclear FeII enzyme family. Many steps in the O2 activation and reaction cycle of FeII-containing homoprotocatechuate 2,3-dioxygenase are made detectable by using the alternative substrate 4-nitrocatechol (4NC) and mutation of the active site His200 to Asn (H200N). Here, the first intermediate (Int-1) observed after adding O2 to the H200N-4NC complex is trapped and characterized using EPR and Mossbauer (MB) spectroscopies. Int-1 is a high-spin (S1 = 5/2) FeIII antiferromagnetically (AF) coupled to an S2 = 1/2 radical (J {approx} 6 cm-1 in [IMG]/medium/pnas.1010015107eq2.gif" ALT="Formula ">). It exhibits parallel-mode EPR signals at g = 8.17 from the S = 2 multiplet, and g = 8.8 and 11.6 from the S = 3 multiplet. These signals are broadened significantly by [IMG]/medium/pnas.1010015107eq3.gif" ALT="Formula "> hyperfine interactions (A17O {approx} 180 MHz). Thus, Int-1 is an AF-coupled [IMG]/medium/pnas.1010015107eq4.gif" ALT="Formula "> species. The experimental observations are supported by density functional theory calculations that show nearly complete transfer of spin density to the bound O2. Int-1 decays to form a second intermediate (Int-2). MB spectra show that it is also an AF-coupled FeIII-radical complex. Int-2 exhibits an EPR signal at g = 8.05 arising from an S = 2 state. The signal is only slightly broadened by [IMG]/medium/pnas.1010015107eq5.gif" ALT="Formula "> (< 3% spin delocalization), suggesting that Int-2 is a peroxo-FeIII-4NC semiquinone radical species. Our results demonstrate facile electron transfer between FeII, O2, and the organic ligand, thereby supporting the proposed wild-type enzyme mechanism.