期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2010
卷号:107
期号:26
页码:11954-11958
DOI:10.1073/pnas.1000489107
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Staphylococcus aureus is an versatile pathogen that can cause life-threatening infections. Depending on the clinical setting, up to 50% of S. aureus infections are caused by methicillin-resistant strains (MRSA) that in most cases are resistant to many other antibiotics, making treatment difficult. The emergence of community-acquired MRSA drastically changed the picture by increasing the risk of MRSA infections. Horizontal transfer of genes encoding for antibiotic resistance or virulence factors is a major concern of multidrug-resistant S. aureus infections and epidemiology. We identified and characterized a type III-like restriction system present in clinical S. aureus strains that prevents transformation with DNA from other bacterial species. Interestingly, our analysis revealed that some clinical MRSA strains are deficient in this restriction system, and thus are hypersusceptible to the horizontal transfer of DNA from other species, such as Escherichia coli, and could easily acquire a vancomycin-resistance gene from enterococci. Inactivation of this restriction system dramatically increases the transformation efficiency of clinical S. aureus strains, opening the field of molecular genetic manipulation of these strains using DNA of exogenous origin.