期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2010
卷号:107
期号:20
页码:9382-9387
DOI:10.1073/pnas.1001870107
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:The unique ability of magnetotactic bacteria to navigate along a geomagnetic field is accomplished with the help of prokaryotic organelles, magnetosomes. The magnetosomes have well-ordered chain-like structures, comprising membrane-enveloped, nano-sized magnetic crystals, and various types of specifically associated proteins. In this study, we applied atomic force microscopy (AFM) to investigate the spatial configuration of isolated magnetosomes from Magnetospirillum magneticum AMB-1 in near-native buffer conditions. AFM observation revealed organic material with a [~]7-nm thickness surrounding a magnetite crystal. Small globular proteins, identified as magnetosome-associated protein MamA, were distributed on the mica surface around the magnetosome. Immuno-labeling with AFM showed that MamA is located on the magnetosome surface. In vitro experiments showed that MamA proteins interact with each other and form a high molecular mass complex. These findings suggest that magnetosomes are covered with MamA oligomers in near-native environments. Furthermore, nanodissection revealed that magnetosomes are built with heterogeneous structures that comprise the organic layer. This study provides important clues to the supramolecular architecture of the bacterial organelle, the magnetosome, and insight into the function of the proteins localized in the organelle.
关键词:magnetotactic bacteria ; scanning probe microscopy ; nanoparticle ; TPR protein ; protein localization