期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2010
卷号:107
期号:12
页码:5640-5645
DOI:10.1073/pnas.0907525107
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Oscillations of neural activity are ubiquitous in the brain and are critical for normal cognitive function. In the visual system, repetitive presentation of a stimulus results in the reduction of power elicited in the gamma frequency band. However, this reduction does not result in degradation of perception; on the contrary, perception is improved by prior experience with the stimulus. To explain how reduction of gamma frequency oscillations, observed in priming experiments, can lead to improvement in behavior, we assume that visual processing takes place in two distinct stages: representation sharpening in the early visual areas and competitive interaction among representations in the higher visual areas and the prefrontal cortex. Here, we present a network model of spiking neurons that demonstrates how stimulus repetition leads to a decrease in power of the local field potential oscillations in the gamma frequency range in the early layer and also improves network response by reducing the latency to reach a decision in the higher area.