首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:Selecting Testlet Features With Predictive Value for the Testlet Effect
  • 本地全文:下载
  • 作者:Muirne C. S. Paap ; Qiwei He ; Bernard P. Veldkamp
  • 期刊名称:SAGE Open
  • 印刷版ISSN:2158-2440
  • 电子版ISSN:2158-2440
  • 出版年度:2015
  • 卷号:5
  • 期号:2
  • DOI:10.1177/2158244015581860
  • 语种:English
  • 出版社:SAGE Publications
  • 摘要:High-stakes tests often consist of sets of questions (i.e., items) grouped around a common stimulus. Such groupings of items are often called testlets. A basic assumption of item response theory (IRT), the mathematical model commonly used in the analysis of test data, is that individual items are independent of one another. The potential dependency among items within a testlet is often ignored in practice. In this study, a technique called tree-based regression (TBR) was applied to identify key features of stimuli that could properly predict the dependence structure of testlet data for the Analytical Reasoning section of a high-stakes test. Relevant features identified included Percentage of “If” Clauses, Number of Entities, Theme/Topic, and Predicate Propositional Density; the testlet effect was smallest for stimuli that contained 31% or fewer “if” clauses, contained 9.8% or fewer verbs, and had Media or Animals as the main theme. This study illustrates the merits of TBR in the analysis of test data.
  • 关键词:tree-based regression; testlet response models; item response theory; high-stakes testing
国家哲学社会科学文献中心版权所有