首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Structural basis of a histidine-DNA nicking/joining mechanism for gene transfer and promiscuous spread of antibiotic resistance
  • 本地全文:下载
  • 作者:Radoslaw Pluta ; D. Roeland Boer ; Fabián Lorenzo-Díaz
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2017
  • 卷号:114
  • 期号:32
  • 页码:E6526-E6535
  • DOI:10.1073/pnas.1702971114
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Relaxases are metal-dependent nucleases that break and join DNA for the initiation and completion of conjugative bacterial gene transfer. Conjugation is the main process through which antibiotic resistance spreads among bacteria, with multidrug-resistant staphylococci and streptococci infections posing major threats to human health. The MOBV family of relaxases accounts for approximately 85% of all relaxases found in Staphylococcus aureus isolates. Here, we present six structures of the MOBV relaxase MobM from the promiscuous plasmid pMV158 in complex with several origin of transfer DNA fragments. A combined structural, biochemical, and computational approach reveals that MobM follows a previously uncharacterized histidine/metal-dependent DNA processing mechanism, which involves the formation of a covalent phosphoramidate histidine-DNA adduct for cell-to-cell transfer. We discuss how the chemical features of the high-energy phosphorus-nitrogen bond shape the dominant position of MOBV histidine relaxases among small promiscuous plasmids and their preference toward Gram-positive bacteria.
  • 关键词:histidine relaxase ; antibiotic resistance ; horizontal gene transfer ; X-ray structure ; Staphylococcus aureus
国家哲学社会科学文献中心版权所有