摘要:In the recent years, significant progress has been made in explaining apparent hardness of improving over naive solutions for many fundamental polynomially solvable problems. This came in the form of conditional lower bounds -- reductions from a problem assumed to be hard. These include 3SUM, All-Pairs Shortest Paths, SAT and Orthogonal Vectors, and others. In the (min,+)-convolution problem, the goal is to compute a sequence c, where c[k] = min_i a[i]+b[k-i], given sequences a and b. This can easily be done in O(n^2) time, but no O(n^{2-eps}) algorithm is known for eps > 0. In this paper we undertake a systematic study of the (min,+)-convolution problem as a hardness assumption. As the first step, we establish equivalence of this problem to a group of other problems, including variants of the classic knapsack problem and problems related to subadditive sequences. The (min,+)-convolution has been used as a building block in algorithms for many problems, notably problems in stringology. It has also already appeared as an ad hoc hardness assumption. We investigate some of these connections and provide new reductions and other results.