首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Optimal Unateness Testers for Real-Valued Functions: Adaptivity Helps
  • 本地全文:下载
  • 作者:Roksana Baleshzar ; Deeparnab Chakrabarty ; Ramesh Krishnan S. Pallavoor
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:80
  • 页码:5:1-5:14
  • DOI:10.4230/LIPIcs.ICALP.2017.5
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We study the problem of testing unateness of functions f:{0,1}^d -> R. We give an O(d/\epsilon . log(d/\epsilon))-query nonadaptive tester and an O(d/\epsilon)-query adaptive tester and show that both testers are optimal for a fixed distance parameter \epsilon. Previously known unateness testers worked only for Boolean functions, and their query complexity had worse dependence on the dimension both for the adaptive and the nonadaptive case. Moreover, no lower bounds for testing unateness were known. We generalize our results to obtain optimal unateness testers for functions f:[n]^d -> R. Our results establish that adaptivity helps with testing unateness of real-valued functions on domains of the form {0,1}^d and, more generally, [n]^d. This stands in contrast to the situation for monotonicity testing where there is no adaptivity gap for functions f:[n]^d -> R.
  • 关键词:Property testing; unate and monotone functions
国家哲学社会科学文献中心版权所有