首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Tight Bounds on the Maximum Number of Shortest Unique Substrings
  • 本地全文:下载
  • 作者:Takuya Mieno ; Shunsuke Inenaga ; Hideo Bannai
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:78
  • 页码:24:1-24:11
  • DOI:10.4230/LIPIcs.CPM.2017.24
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:A substring Q of a string S is called a shortest unique substring (SUS) for interval [s,t] in S, if Q occurs exactly once in S, this occurrence of Q contains interval [s,t], and every substring of S which contains interval [s,t] and is shorter than Q occurs at least twice in S. The SUS problem is, given a string S, to preprocess S so that for any subsequent query interval [s,t] all the SUSs for interval [s,t] can be answered quickly. When s = t, we call the SUSs for [s, t] as point SUSs, and when s <= t, we call the SUSs for [s, t] as interval SUSs. There exist optimal O(n)-time preprocessing scheme which answers queries in optimal O(k) time for both point and interval SUSs, where n is the length of S and k is the number of outputs for a given query. In this paper, we reveal structural, combinatorial properties underlying the SUS problem: Namely, we show that the number of intervals in S that correspond to point SUSs for all query positions in S is less than 1.5n, and show that this is a matching upper and lower bound. Also, we consider the maximum number of intervals in S that correspond to interval SUSs for all query intervals in S.
  • 关键词:shortest unique substrings; maximal unique substrings
国家哲学社会科学文献中心版权所有