首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Ca2+-induced movement of tropomyosin on native cardiac thin filaments revealed by cryoelectron microscopy
  • 本地全文:下载
  • 作者:Cristina Risi ; Jamie Eisner ; Betty Belknap
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2017
  • 卷号:114
  • 期号:26
  • 页码:6782-6787
  • DOI:10.1073/pnas.1700868114
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Muscle contraction relies on the interaction of myosin motors with F-actin, which is regulated through a translocation of tropomyosin by the troponin complex in response to Ca2+. The current model of muscle regulation holds that at relaxing (low-Ca2+) conditions tropomyosin blocks myosin binding sites on F-actin, whereas at activating (high-Ca2+) conditions tropomyosin translocation only partially exposes myosin binding sites on F-actin so that binding of rigor myosin is required to fully activate the thin filament (TF). Here we used a single-particle approach to helical reconstruction of frozen hydrated native cardiac TFs under relaxing and activating conditions to reveal the azimuthal movement of the tropomyosin on the surface of the native cardiac TF upon Ca2+ activation. We demonstrate that at either relaxing or activating conditions tropomyosin is not constrained in one structural state, but rather is distributed between three structural positions on the surface of the TF. We show that two of these tropomyosin positions restrain actomyosin interactions, whereas in the third position, which is significantly enhanced at high Ca2+, tropomyosin does not block myosin binding sites on F-actin. Our data provide a structural framework for the enhanced activation of the cardiac TF over the skeletal TF by Ca2+ and lead to a mechanistic model for the regulation of the cardiac TF.
  • 关键词:thin filament ; cardiac muscle regulation ; cryoelectron microscopy
国家哲学社会科学文献中心版权所有