首页    期刊浏览 2025年01月09日 星期四
登录注册

文章基本信息

  • 标题:K-L情報量正則化を用いた線形ファジィクラスタリング法
  • 本地全文:下载
  • 作者:Katsuhiro HONDA ; Akihiro KANDA ; Hidetomo ICHI-HASHI
  • 期刊名称:知能と情報
  • 印刷版ISSN:1347-7986
  • 电子版ISSN:1881-7203
  • 出版年度:2003
  • 卷号:15
  • 期号:6
  • 页码:682-692
  • DOI:10.3156/jsoft.15.682
  • 出版社:Japan Society for Fuzzy Theory and Intelligent Informatics
  • 摘要:FCM-type fuzzy clustering approaches are closely related to Gaussian Mixture Models (GMMs) and the objective function of Fuzzy c-Means with regularization by K-L information (KFCM) is optimized by an EM-like algorithm. In this paper, we propose to apply probabilistic PCA mixture models to linear clustering following the discussion on the relationship between Local PCA and linear fuzzy clustering. Although the proposed method is a kind of the constrained model of KFCM, the algorithm includes a similar formulation with the Fuzzy c-Varieties (FCV) algorithm as a special case. Then the algorithm can be regarded as a modified FCV algorithm with regularization by K-L information, which makes it possible to tune the cluster shapes adaptively.
  • 关键词:Fuzzy c-varieties ; Probabilistic principal component analysis ; Regularization by K-L information
国家哲学社会科学文献中心版权所有