首页    期刊浏览 2025年02月01日 星期六
登录注册

文章基本信息

  • 标题:pvclass: An R Package for p Values for Classification
  • 本地全文:下载
  • 作者:Niki Zumbrunnen ; Lutz Dümbgen
  • 期刊名称:Journal of Statistical Software
  • 印刷版ISSN:1548-7660
  • 电子版ISSN:1548-7660
  • 出版年度:2017
  • 卷号:78
  • 期号:1
  • 页码:1-19
  • 语种:English
  • 出版社:University of California, Los Angeles
  • 摘要:Let (X, Y) be a random variable consisting of an observed feature vector X and an unobserved class label Y ∈ {1, 2, . . . , L} with unknown joint distribution. In addition, let D be a training data set consisting of n completely observed independent copies of (X, Y). Instead of providing point predictors (classifiers) for Y , we compute for each b ∈ {1, 2, . . . , L} a p value π_b (X, D) for the null hypothesis that Y = b, treating Y temporarily as a fixed parameter, i.e., we construct a prediction region for Y with a certain confidence. The advantages of this approach over more traditional ones are reviewed briefly. In principle, any reasonable classifier can be modified to yield nonparametric p values. We describe the R package pvclass which computes nonparametric p values for the potential class memberships of new observations as well as cross-validated p values for the training data. Additionally, it provides graphical displays and quantitative analyses of the p values.
  • 关键词:classification;quantification of uncertainty;R
国家哲学社会科学文献中心版权所有