期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2017
卷号:114
期号:22
页码:E4354-E4359
DOI:10.1073/pnas.1703295114
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:In iron-based superconductors, high critical temperature ( T c) superconductivity over 50 K has only been accomplished in electron-doped hRE FeAsO ( hRE is heavy rare earth ( RE ) element). Although hRE FeAsO has the highest bulk T c (58 K), progress in understanding its physical properties has been relatively slow due to difficulties in achieving high-concentration electron doping and carrying out neutron experiments. Here, we present a systematic neutron powder diffraction study of 154SmFeAsO1− x D x , and the discovery of a long-range antiferromagnetic ordering with x ≥ 0.56 (AFM2) accompanying a structural transition from tetragonal to orthorhombic. Surprisingly, the Fe magnetic moment in AFM2 reaches a magnitude of 2.73 μB/Fe, which is the largest in all nondoped iron pnictides and chalcogenides. Theoretical calculations suggest that the AFM2 phase originates in kinetic frustration of the Fe-3 d xy orbital, in which the nearest-neighbor hopping parameter becomes zero. The unique phase diagram, i.e., highest- T c superconducting phase adjacent to the strongly correlated phase in electron-overdoped regime, yields important clues to the unconventional origins of superconductivity.
关键词:high- T c superconductivity ; neutron scattering ; oxyhydrides ; iron-based superconductors ; antiferromagnetism