首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:A Survey on Crop Yield Prediction Models
  • 本地全文:下载
  • 作者:K. Menaka ; N. Yuvaraj
  • 期刊名称:Indian Journal of Innovations and Developments
  • 印刷版ISSN:2277-5382
  • 电子版ISSN:2277-5390
  • 出版年度:2016
  • 卷号:5
  • 期号:12
  • 页码:1-7
  • 语种:English
  • 出版社:Indian Society for Education and Environment
  • 摘要:Objectives : To analysis various models to improve the prediction of crop yield production. Methods : In this paper, there are different methods has been analyzed to predict the crop yield. The methods such as artificial neural network, Adaptive Neuro-Fuzzy inference System, Fuzzy Logic and Multi Linear Regression are analyzed to know the best methods for crop yield prediction. The prediction of crop yield varied by internal factors and external factors of crop an environment. The internal factors such as pesticides, water level, spacing and fertilizers and the external factors such as temperature, humidity, and rainfall. There are various models were developed to predict the crop yield prediction. This paper provides detailed information about the different models for crop yield prediction. Findings : In this paper various models for crop yield prediction are compared through their parameters such as Root Mean Square Error (RMSE), R 2 ,correlation coefficient and Mean Square Error (MSE) to prove Adaptive NeuroFuzzy Inference System (ANFIS)prediction model is better than other techniques. Application/improvements : The findings of this work prove that the Adaptive Neuro Fuzzy Inference System (ANFIS) prediction model provides better result than other approaches.
  • 其他摘要:Objectives : To analysis various models to improve the prediction of crop yield production. Methods : In this paper, there are different methods has been analyzed to predict the crop yield. The methods such as artificial neural network, Adaptive Neuro-Fuzzy inference System, Fuzzy Logic and Multi Linear Regression are analyzed to know the best methods for crop yield prediction. The prediction of crop yield varied by internal factors and external factors of crop an environment. The internal factors such as pesticides, water level, spacing and fertilizers and the external factors such as temperature, humidity, and rainfall. There are various models were developed to predict the crop yield prediction. This paper provides detailed information about the different models for crop yield prediction. Findings : In this paper various models for crop yield prediction are compared through their parameters such as Root Mean Square Error (RMSE), R 2 ,correlation coefficient and Mean Square Error (MSE) to prove Adaptive NeuroFuzzy Inference System (ANFIS)prediction model is better than other techniques. Application/improvements : The findings of this work prove that the Adaptive Neuro Fuzzy Inference System (ANFIS) prediction model provides better result than other approaches.
  • 关键词:Crop Yield Prediction; Adaptive Neurofuzzy Inference System; Data Mining; Agriculture.
国家哲学社会科学文献中心版权所有