出版社:Suntory Toyota International Centre for Economics and Related Disciplines
摘要:For testing lack of correlation against spatial autoregressive alternatives, Lagrange multiplier tests enjoy their usual computational advantages, but the (x squared) first-order asymptotic approximation to critical values can be poor in small samples. We develop refined tests for lack of spatial error correlation in regressions, based on Edgeworth expansion. In Monte Carlo simulations these tests, and bootstrap ones, generally significantly outperform x squared-based tests.