首页    期刊浏览 2024年12月14日 星期六
登录注册

文章基本信息

  • 标题:Identifying At-Risk Students for Early Interventions—A Time-Series Clustering Approach
  • 作者:Jui-Long Hung ; Morgan C. Wang ; Shuyan Wang
  • 期刊名称:IEEE Transactions on Emerging Topics in Computing
  • 印刷版ISSN:2168-6750
  • 出版年度:2017
  • 卷号:5
  • 期号:1
  • 页码:45-55
  • DOI:10.1109/TETC.2015.2504239
  • 出版社:IEEE Publishing
  • 摘要:The purpose of this paper is to identify at-risk online students earlier, more often, and with greater accuracy using time-series clustering. The case study showed that the proposed approach could generate models with higher accuracy and feasibility than the traditional frequency aggregation approaches. The best performing model can start to capture at-risk students from week 10. In addition, the four phases in student's learning process detected holiday effect and illustrate at-risk students' behaviors before and after a long holiday break. The findings also enable online instructors to develop corresponding instructional interventions via course design or student-teacher communications.
  • 关键词:predictive modeling;Clustering;classification;association rules;feature extraction or construction;mining methods and algorithms;time-series analysis;LMS
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有