首页    期刊浏览 2024年12月05日 星期四
登录注册

文章基本信息

  • 标题:New Operational Matrix via Genocchi Polynomials for Solving Fredholm-Volterra Fractional Integro-Differential Equations
  • 本地全文:下载
  • 作者:Jian Rong Loh ; Chang Phang ; Abdulnasir Isah
  • 期刊名称:Advances in Mathematical Physics
  • 印刷版ISSN:1687-9120
  • 电子版ISSN:1687-9139
  • 出版年度:2017
  • 卷号:2017
  • DOI:10.1155/2017/3821870
  • 出版社:Hindawi Publishing Corporation
  • 摘要:It is known that Genocchi polynomials have some advantages over classical orthogonal polynomials in approximating function, such as lesser terms and smaller coefficients of individual terms. In this paper, we apply a new operational matrix via Genocchi polynomials to solve fractional integro-differential equations (FIDEs). We also derive the expressions for computing Genocchi coefficients of the integral kernel and for the integral of product of two Genocchi polynomials. Using the matrix approach, we further derive the operational matrix of fractional differentiation for Genocchi polynomial as well as the kernel matrix. We are able to solve the aforementioned class of FIDE for the unknown function . This is achieved by approximating the FIDE using Genocchi polynomials in matrix representation and using the collocation method at equally spaced points within interval . This reduces the FIDE into a system of algebraic equations to be solved for the Genocchi coefficients of the solution . A few numerical examples of FIDE are solved using those expressions derived for Genocchi polynomial approximation. Numerical results show that the Genocchi polynomial approximation adopting the operational matrix of fractional derivative achieves good accuracy comparable to some existing methods. In certain cases, Genocchi polynomial provides better accuracy than the aforementioned methods.
国家哲学社会科学文献中心版权所有