首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:AIC-TYPE MODEL SELECTION CRITERION FOR MULTIVARIATE LINEAR REGRESSION WITH A FUTURE EXPERIMENT
  • 本地全文:下载
  • 作者:Kenichi Satoh
  • 期刊名称:JOURNAL OF THE JAPAN STATISTICAL SOCIETY
  • 印刷版ISSN:1882-2754
  • 电子版ISSN:1348-6365
  • 出版年度:1997
  • 卷号:27
  • 期号:2
  • 页码:135-140
  • DOI:10.14490/jjss1995.27.135
  • 出版社:JAPAN STATISTICAL SOCIETY
  • 摘要:This paper deals with the situation in which a current experiment is given and although a future design matrix has been prepared, the corresponding observation matrix is not available. To predict the future observation matrix, we consider selecting an appropriate design matrix by proposing a predictive Akaike Information Criteria ( PAIC ). The PAIC is derived as an exact unbiased estimator for the risk function and is based on the expected Kullback-Leibler divergence and the future design matrix. A simulation study illustrated that model selection with PAIC performs well for some extrapolation cases.
  • 关键词:AIC;exact unbiased;extrapolation;predictive AIC;multivariate linear regression
国家哲学社会科学文献中心版权所有