摘要:An ID-based encryption (IBE) is a public key cryptosystem, in which a user's public key is given as a user ID. In IBE, only a single center generates all user secret keys, which may give the center a load of burdensome work. A hierarchical ID-based encryption (HIBE) is a kind of IBE and overcomes the problem by delegating a user secret key generation to a lower-level center, in which centers form a hierarchical structure. However, all ancestor nodes in HIBE act as centers. That is, any ancestor as well as the root can generate a secret key for any descendant node and, thus, a cipher text to a node can be decrypted by any ancestor node even if the ancestor does not have the same secret key as that of a target node. In this paper, we propose the concept of ancestor-excludable HIBE, in which ancestors with a level less than the designated one can be excluded from a set of privileged ancestors with a right to decrypt a cipher text to a target node. We also give the functional definition together with the security definition. This notion is denoted by AE-HIBE simply. We present the concrete example of AE-HIBE, which can work with constant-size ciphertext and decryption time, independent of the hierarchy level. We prove that our AE-HIBE is selective-ID-CPA secure in the standard model, which can be converted to be selective-ID-CCA secure by applying a general conversion method. Furthermore, AE-HIBE can be naturally applied to the broadcast encryption to realize the efficient public-key version with the user-key size of O (log2 N ) and the transmission rate of O ( r ) for N users and r revoked users. The user-key size is the smallest at the transmission rate of O ( r ), up to the present.