首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Improving AfriPop dataset with settlement extents extracted from RapidEye for the border region comprising South-Africa, Swaziland and Mozambique
  • 本地全文:下载
  • 作者:Julie Deleu ; Jonas Franke ; Michael Gebreslasie
  • 期刊名称:Geospatial Health
  • 印刷版ISSN:1970-7096
  • 出版年度:2015
  • 卷号:10
  • 期号:2
  • 页码:48-54
  • DOI:10.4081/gh.2015.336
  • 出版社:PAGEPress Publications
  • 摘要:For modelling the spatial distribution of malaria incidence, accurate and detailed information on population size and distribution are of significant importance. Different, global, spatial, standard datasets of population distribution have been developed and are widely used. However, most of them are not up-to-date and the low spatial resolution of the input census data has limitations for contemporary, national- scale analyses. The AfriPop project, launched in July 2009, was initiated with the aim of producing detailed, contemporary and easily updatable population distribution datasets for the whole of Africa. High-resolution satellite sensors can help to further improve this dataset through the generation of high-resolution settlement layers at greater spatial details. In the present study, the settlement extents included in the MALAREO land use classification were used to generate an enhanced and updated version of the AfriPop dataset for the study area covering southern Mozambique, eastern Swaziland and the malarious part of KwaZulu-Natal in South Africa. Results show that it is possible to easily produce a detailed and updated population distribution dataset applying the AfriPop modelling approach with the use of high-resolution settlement layers and population growth rates. The 2007 and 2011 population datasets are freely available as a product of the MALAREO project and can be downloaded from the project website.
  • 关键词:Population mapping;Health;Malaria risk;Remote sensing;Southern Africa
国家哲学社会科学文献中心版权所有