首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:MPPT for PV System Based on Variable Step Size Perturb and Observe Algorithm
  • 本地全文:下载
  • 作者:Awang Jusoh ; Rozana Alik ; Tan Kar Guan
  • 期刊名称:TELKOMNIKA (Telecommunication Computing Electronics and Control)
  • 印刷版ISSN:2302-9293
  • 出版年度:2017
  • 卷号:15
  • 期号:1
  • 页码:79-92
  • DOI:10.12928/telkomnika.v15i1.3160
  • 语种:English
  • 出版社:Universitas Ahmad Dahlan
  • 摘要:This paper presents some improvements on the Perturb and Observe (P&O) method to overcome the common drawbacks of conventional P&O method. The main advantage of this modified algorithm is its simplicity with higher accuracy results, compared to the conventional methods. The operation of the entire solar Maximum Power Point Tracking (MPPT) system was observed through two different approaches, which are through MATLAB/Simulink simulation and hardware implementation. A small scale of hardware design, which consists of solar PV cell, boost converter and Arduino Mega2560 microcontroller had been utilized for further verification on the simulation results. The simulation results that was carried out by this modified P&O algorithm showed improvement and a promising performance: faster convergence speed of 0.67s, small oscillation at steady state region and promising efficiency of 95.23%. Besides, from the hardware results, the convergence time of the power curve was able to maintain at 0.2s and give almost zero oscillation during steady state. It is envisaged that the method is useful in future research of Photovoltaic (PV) system.
  • 其他摘要:This paper presents some improvements on the Perturb and Observe (P&O) method to overcome the common drawbacks of conventional P&O method. The main advantage of this modified algorithm is its simplicity with higher accuracy results, compared to the conventional methods. The operation of the entire solar Maximum Power Point Tracking (MPPT) system was observed through two different approaches, which are through MATLAB/Simulink simulation and hardware implementation. A small scale of hardware design, which consists of solar PV cell, boost converter and Arduino Mega2560 microcontroller had been utilized for further verification on the simulation results. The simulation results that was carried out by this modified P&O algorithm showed improvement and a promising performance: faster convergence speed of 0.67s, small oscillation at steady state region and promising efficiency of 95.23%. Besides, from the hardware results, the convergence time of the power curve was able to maintain at 0.2s and give almost zero oscillation during steady state. It is envisaged that the method is useful in future research of Photovoltaic (PV) system.
国家哲学社会科学文献中心版权所有