This paper explore the need for exploiting auxiliary variables in sample survey and utilizing asymptotically optimum estimator in double sampling to increase the efficiency of estimators. The study proposed two types of estimators with two auxiliary variables for two phase sampling when there is no information about auxiliary variables at population level. The expressions for the Mean Squared Error (MSE) of the proposed estimators were derived to the first order of approximation. An empirical comparative approach of the minimum variances and percent relative efficiency were adopted to study the efficiency of the proposed and existing estimators. It was established that, the proposed estimators performed more efficiently than the mean per unit estimator and other previous estimators that don’t use auxiliary variable and that are not asymptotically optimum. Also, it was established that estimators that are asymptotically optimum that utilized single auxiliary variable are more efficient than those that are not asymptotically optimum with two auxiliary variables.