首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:EH3 (ABHD9): the first member of a new epoxide hydrolase family with high activity for fatty acid epoxides
  • 本地全文:下载
  • 作者:Martina Decker ; Magdalena Adamska ; Annette Cronin
  • 期刊名称:JLR Papers In Press
  • 印刷版ISSN:0022-2275
  • 电子版ISSN:1539-7262
  • 出版年度:2012
  • 卷号:53
  • 期号:10
  • 页码:2038-2045
  • DOI:10.1194/jlr.M024448
  • 语种:English
  • 出版社:American Society for Biochemistry and Molecular Biology
  • 摘要:Epoxide hydrolases are a small superfamily of enzymes important for the detoxification of chemically reactive xenobiotic epoxides and for the processing of endogenous epoxides that act as signaling molecules. Here, we report the identification of two human epoxide hydrolases: EH3 and EH4. They share 45% sequence identity, thus representing a new family of mammalian epoxide hydrolases. Quantitative RT-PCR from mouse tissue indicates strongest EH3 expression in lung, skin, and upper gastrointestinal tract. The recombinant enzyme shows a high turnover number with 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid (EET), as well as 9,10-epoxyoctadec-11-enoic acid (leukotoxin). It is inhibited by a subclass of N,N’-disubstituted urea derivatives, including 12-(3-adamantan-1-yl-ureido)-dodecanoic acid, 1-cyclohexyl-3-dodecylurea, and 1-(1-acetylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea, compounds so far believed to be selective inhibitors of mammalian soluble epoxide hydrolase (sEH). Its sensitivity to this subset of sEH inhibitors may have implications on the pharmacologic profile of these compounds. This is particularly relevant because sEH is a potential drug target, and clinical trials are under way exploring the value of sEH inhibitors in the treatment of hypertension and diabetes type II.
  • 关键词:epoxyeicosatrienoic acid ; blood pressure ; pain ; diabetes type II
国家哲学社会科学文献中心版权所有