首页    期刊浏览 2024年12月14日 星期六
登录注册

文章基本信息

  • 标题:Transcript profiling and lipidomic analysis of ceramide subspecies in mouse embryonic stem cells and embryoid bodies
  • 本地全文:下载
  • 作者:Hyejung Park ; Christopher A. Haynes ; Alison V. Nairn
  • 期刊名称:JLR Papers In Press
  • 印刷版ISSN:0022-2275
  • 电子版ISSN:1539-7262
  • 出版年度:2010
  • 卷号:51
  • 期号:3
  • 页码:480-489
  • DOI:10.1194/jlr.M000984
  • 语种:English
  • 出版社:American Society for Biochemistry and Molecular Biology
  • 摘要:Ceramides (Cers) are important in embryogenesis, but no comprehensive analysis of gene expression for Cer metabolism nor the Cer amounts and subspecies has been conducted with an often used model: mouse embryonic stem cells (mESCs) versus embroid bodies (EBs). Measuring the mRNA levels by quantitative RT-PCR and the amounts of the respective metabolites by LC-ESI/MS/MS, notable differences between R1 mESCs and EBs were: EBs have higher mRNAs for CerS1 and CerS3 , which synthesize C18- and C≥24-carbons dihydroceramides (DH)Cer, respectively; EBs have higher CerS2 (for C24:0- and C24:1-); and EBs have lower CerS5 + CerS6 (for C16-). In agreement with these findings, EBs have (DH)Cer with higher proportions of C18-, C24- and C26- and less C16-fatty acids, and longer (DH)Cer are also seen in monohexosylCers and sphingomyelins. EBs had higher mRNAs for fatty acyl-CoA elongases that produce C18-, C24-, and C26-fatty acyl-CoAs ( Elovl3 and Elovl6 ), and higher amounts of these cosubstrates for CerS. Thus, these studies have found generally good agreement between genomic and metabolomic data in defining that conversion of mESCs to EBs is accompanied by a large number of changes in gene expression and subspecies distributions for both sphingolipids and fatty acyl-CoAs.
  • 关键词:embryonic stem cell ; embryoid body ; sphingolipid ; differentiation ; ceramide synthase ; fatty acyl-CoA elongase
国家哲学社会科学文献中心版权所有