首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:Nuclear receptor-mediated repression of human cholesterol 7α-hydroxylase gene transcription by bile acids
  • 本地全文:下载
  • 作者:Wenling Chen ; Erika Owsley ; Yizeng Yang
  • 期刊名称:JLR Papers In Press
  • 印刷版ISSN:0022-2275
  • 电子版ISSN:1539-7262
  • 出版年度:2001
  • 卷号:42
  • 期号:9
  • 页码:1402-1412
  • 语种:English
  • 出版社:American Society for Biochemistry and Molecular Biology
  • 摘要:Hydrophobic bile acids strongly repressed transcription of the human cholesterol 7α-hydroxylase gene ( CYP7A1 ) in the bile acid biosynthetic pathway in the liver. Farnesoid X receptor (FXR) repressed CYP7A1 /Luc reporter activity in a transfection assay in human liver-derived HepG2 cells, but not in human embryonic kidney (HEK) 293 cells. FXR-binding activity was required for bile acid repression of CYP7A1 transcription despite the fact that FXR did not bind to the CYP7A1 promoter. FXR-induced liver-specific factors must be required for mediating bile acid repression. Bile acids and FXR repressed endogenous CYP7A1 but stimulated α-fetoprotein transcription factor (FTF) and small heterodimer partner (SHP) mRNA expression in HepG2 cells. Feeding of rats with chenodeoxycholic acid repressed CYP7A1, induced FTF, but had no effect on SHP mRNA expression in the liver. FTF strongly repressed CYP7A1 transcription in a dose-dependent manner, and SHP further inhibited CYP7A1 in HepG2 cells, but not in HEK 293 cells. FXR only moderately stimulated SHP transcription, whereas FTF strongly inhibited SHP transcription in HepG2 cells. Results revealed that FTF was a dominant negative factor that was induced by bile acid-activated FXR to inhibit both CYP7A1 and SHP transcription. Differential regulation of FTF and SHP expression by bile acids may explain the wide variation in CYP7A1 expression and the rate of bile acid synthesis and regulation in different species. —Chen, W., E. Owsley, Y. Yang, D. Stroup, and J. Y. L. Chiang. Nuclear receptor-mediated repression of human cholesterol 7α-hydroxylase gene transcription by bile acids. J. Lipid Res. 2001. 42: 1402–1412.
  • 关键词:bile acid synthesis ; mechanism of gene regulation ; cytochrome P450
国家哲学社会科学文献中心版权所有