出版社:American Society for Biochemistry and Molecular Biology
摘要:Six naturally occurring and three synthetic molecular species of lactosylceramide (LacCer) were used to examine the molecular species specificity of CMP-N-acetylneuraminate:lactosylceramide alpha 2,3-sialyltransferase in a Golgi-rich fraction of rat liver. The enzyme molecular species specificity was determined either in the presence of nonspecific lipid transfer protein or in the presence of detergents. Assays performed in the presence of transfer protein showed that for those lactosylceramide molecular species with either d18:1 or d18:0 long chain base the enzyme activity decreased linearly as the effective carbon number of the fatty acid increased. An increase in the carbon number of the long chain base decreased the activity of the enzyme twice as much as a corresponding increase in the carbon number of the fatty acid. On the other hand, when the enzyme activity was assayed in the presence of detergents, there was no significant difference in activity among the various molecular species of lactosylceramide based upon the carbon number of the fatty acid or on the presence of a double bond in the long chain base. However, the decrease in enzyme activity with an increase in the carbon number of the long chain base persisted. These results demonstrate that sialyltransferase has binding specificity with respect to the long chain base, but not the fatty acid. The apparent molecular species towards the fatty acid is related to the aqueous solubility of the various LacCer molecular species.