首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Lecithin:cholesterol acyltransferase-induced transformation of HepG2 lipoproteins.
  • 本地全文:下载
  • 作者:M R McCall ; A V Nichols ; P J Blanche
  • 期刊名称:JLR Papers In Press
  • 印刷版ISSN:0022-2275
  • 电子版ISSN:1539-7262
  • 出版年度:1989
  • 卷号:30
  • 期号:10
  • 页码:1579-1589
  • 语种:English
  • 出版社:American Society for Biochemistry and Molecular Biology
  • 摘要:Previous studies with the human hepatoblastoma-derived HepG2 cell line in this laboratory have shown that these cells produce high density lipoproteins (HDL) that are similar to HDL isolated from patients with familial lecithin:cholesterol acyltransferase (LCAT) deficiency. Experiments were, therefore, performed to determine whether HepG2 HDL could be transformed into plasma-like particles by incubation with LCAT. Concentrated HepG2 lipoproteins (d less than 1.235 g/ml) were incubated with purified LCAT or lipoprotein-deficient plasma (LPDP) for 4, 12, or 24 h at 37 degrees C. HDL isolated from control samples possessed excess phospholipid and unesterified cholesterol relative to plasma HDL and appeared as a mixed population of small spherical (7.8 +/- 1.3 nm) and larger discoidal particles (17.7 +/- 4.9 nm long axis) by electron microscopy. Nondenaturing gradient gel analysis (GGE) of control HDL showed major peaks banding at 7.4, 10.0, 11.1, 12.2, and 14.7 nm. Following 4-h LCAT and 12-h LPDP incubations, HepG2 HDL were mostly spherical by electron microscopy and showed major peaks at 10.1 and 8.1 nm (LCAT) and 10.0 and 8.4 nm (LPDP) by GGE; the particle size distribution was similar to that of plasma HDL. In addition, the chemical composition of HepG2 HDL at these incubation times approximated that of plasma HDL. Molar increases in HDL cholesteryl ester were accompanied by equimolar decreases in phospholipid and unesterified cholesterol. HepG2 low density lipoproteins (LDL) isolated from control samples showed a prominent protein band at 25.6 nm with GGE. Active LPDP or LCAT incubations resulted in the appearance of additional protein bands at 24.6 and 24.1 nm. No morphological changes were observed with electron microscopy. Chemical analysis indicated that the LDL cholesteryl ester formed was insufficient to account for phospholipid lost, suggesting that LCAT phospholipase activity occurred without concomitant cholesterol esterification.
国家哲学社会科学文献中心版权所有