首页    期刊浏览 2025年01月06日 星期一
登录注册

文章基本信息

  • 标题:Mode of action of steroid desmolase and reductases synthesized by Clostridium "scindens" (formerly Clostridium strain 19).
  • 本地全文:下载
  • 作者:J Winter ; G N Morris ; S O'Rourke-Locascio
  • 期刊名称:JLR Papers In Press
  • 印刷版ISSN:0022-2275
  • 电子版ISSN:1539-7262
  • 出版年度:1984
  • 卷号:25
  • 期号:10
  • 页码:1124-1131
  • 语种:English
  • 出版社:American Society for Biochemistry and Molecular Biology
  • 摘要:A recently isolated hitherto unknown Clostridium from human feces, designated Clostridium "scindens" (formerly strain 19), synthesizes at least two enzymes active on the side-chain of the steroid molecule and two enzymes active on the hydroxyl groups of the 7-position of bile acids. Steroid desmolase, responsible for side-chain cleavage of corticoids, and 20 alpha-hydroxysteroid dehydrogenase have not been detected in any other bacterial species of the resident colonic flora. Steroid desmolase is Eh-dependent (optimum ca. -130 mV), requires a hydroxy group at C-17, and preferably an alpha-ketol group in the side-chain; an alpha-hydroxy group at C-20 reduces and a beta-hydroxy group at C-20 prevents side-chain cleavage. With suitable substrates, the yield of C-19 steroids is proportional to the bacterial multiplication rate. 20 alpha-Hydroxysteroid dehydrogenase (20 alpha-HSDH) is also Eh-dependent (optimum ca. -300 mV) and reduces the C-20 keto function to an alpha-hydroxy group, regardless of the presence or absence of a hydroxy group at C-17. 7 alpha-Dehydroxylase metabolizes cholic and chenodeoxycholic acid, while 7 beta-hydroxysteroid dehydrogenase acts upon ursodeoxycholic acid. The latter two enzymes are not specific for C. scindens.
国家哲学社会科学文献中心版权所有