首页    期刊浏览 2025年01月22日 星期三
登录注册

文章基本信息

  • 标题:ストリーム中の頻出飽和集合を抽出するオンライン型ϵ-近似アルゴリズムの完全性
  • 本地全文:下载
  • 作者:岩沼 宏治 ; 山本 泰生 ; 福田 翔士
  • 期刊名称:人工知能学会論文誌
  • 印刷版ISSN:1346-0714
  • 电子版ISSN:1346-8030
  • 出版年度:2016
  • 卷号:31
  • 期号:5
  • 页码:B-G52_1-10
  • DOI:10.1527/tjsai.B-G52
  • 出版社:The Japanese Society for Artificial Intelligence
  • 摘要:

    In this paper, we propose a novel online ϵ-approximation algorithm, called LC-CloStream, for mining closed frequent itemsets embedded in a transactional stream. LC-CloStream is based on an incremental/cumulative intersection method and ϵ-elimination proposed by Lossy Counting algorithm. We show, LC-CloStream is essentially incomplete, but is still semi-complete for mining frequent closed itemsets in a stream. Moreover, we prove the completeness of extracting frequent itemsets and the ϵ-approximation for estimating the frequency. We also show several good performances of the experimental evaluation for LC-CloStream.

  • 关键词:closed frequent itemset;online mining;ϵ-approximation;incremental intersection;transactional stream
国家哲学社会科学文献中心版权所有