首页    期刊浏览 2025年01月21日 星期二
登录注册

文章基本信息

  • 标题:Evaluative Language Beyond Bags of Words: Linguistic Insights and Computational Applications
  • 本地全文:下载
  • 作者:Farah Benamara ; Maite Taboada ; Yannick Mathieu
  • 期刊名称:Computational Linguistics
  • 印刷版ISSN:0891-2017
  • 电子版ISSN:1530-9312
  • 出版年度:2017
  • 卷号:43
  • 期号:1
  • 页码:201-264
  • DOI:10.1162/COLI_a_00278
  • 语种:English
  • 出版社:MIT Press
  • 摘要:The study of evaluation, affect, and subjectivity is a multidisciplinary enterprise, including sociology, psychology, economics, linguistics, and computer science. A number of excellent computational linguistics and linguistic surveys of the field exist. Most surveys, however, do not bring the two disciplines together to show how methods from linguistics can benefit computational sentiment analysis systems. In this survey, we show how incorporating linguistic insights, discourse information, and other contextual phenomena, in combination with the statistical exploitation of data, can result in an improvement over approaches that take advantage of only one of these perspectives. We first provide a comprehensive introduction to evaluative language from both a linguistic and computational perspective. We then argue that the standard computational definition of the concept of evaluative language neglects the dynamic nature of evaluation, in which the interpretation of a given evaluation depends on linguistic and extra-linguistic contextual factors. We thus propose a dynamic definition that incorporates update functions. The update functions allow for different contextual aspects to be incorporated into the calculation of sentiment for evaluative words or expressions, and can be applied at all levels of discourse. We explore each level and highlight which linguistic aspects contribute to accurate extraction of sentiment. We end the review by outlining what we believe the future directions of sentiment analysis are, and the role that discourse and contextual information need to play.
国家哲学社会科学文献中心版权所有