首页    期刊浏览 2025年01月25日 星期六
登录注册

文章基本信息

  • 标题:Hashtag Sense Clustering Based on Temporal Similarity
  • 本地全文:下载
  • 作者:Giovanni Stilo ; Paola Velardi
  • 期刊名称:Computational Linguistics
  • 印刷版ISSN:0891-2017
  • 电子版ISSN:1530-9312
  • 出版年度:2017
  • 卷号:43
  • 期号:1
  • 页码:181-200
  • DOI:10.1162/COLI_a_00277
  • 语种:English
  • 出版社:MIT Press
  • 摘要:Hashtags are creative labels used in micro-blogs to characterize the topic of a message/discussion. Regardless of the use for which they were originally intended, hashtags cannot be used as a means to cluster messages with similar content. First, because hashtags are created in a spontaneous and highly dynamic way by users in multiple languages, the same topic can be associated with different hashtags, and conversely, the same hashtag may refer to different topics in different time periods. Second, contrary to common words, hashtag disambiguation is complicated by the fact that no sense catalogs (e.g., Wikipedia or WordNet) are available; and, furthermore, hashtag labels are difficult to analyze, as they often consist of acronyms, concatenated words, and so forth. A common way to determine the meaning of hashtags has been to analyze their context, but, as we have just pointed out, hashtags can have multiple and variable meanings. In this article, we propose a temporal sense clustering algorithm based on the idea that semantically related hashtags have similar and synchronous usage patterns.
国家哲学社会科学文献中心版权所有