首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:Predicting the academic success of architecture students by pre-enrolment requirement: using machine-learning techniques
  • 本地全文:下载
  • 作者:Ralph Olusola Aluko ; Olumide Afolarin Adenuga ; Patricia Omega Kukoyi
  • 期刊名称:Construction Economics and Building
  • 印刷版ISSN:2204-9029
  • 出版年度:2016
  • 卷号:16
  • 期号:4
  • 页码:86-98
  • 语种:English
  • 出版社:UTS ePRESS
  • 摘要:In recent years, there has been an increase in the number of applicants seeking admission into architecture programmes. As expected, prior academic performance (also referred to as pre-enrolment requirement) is a major factor considered during the process of selecting applicants. In the present study, machine learning models were used to predict academic success of architecture students based on information provided in prior academic performance. Two modeling techniques, namely K-nearest neighbour (k-NN) and linear discriminant analysis were applied in the study. It was found that K-nearest neighbour (k-NN) outperforms the linear discriminant analysis model in terms of accuracy. In addition, grades obtained in mathematics (at ordinary level examinations) had a significant impact on the academic success of undergraduate architecture students. This paper makes a modest contribution to the ongoing discussion on the relationship between prior academic performance and academic success of undergraduate students by evaluating this proposition. One of the issues that emerges from these findings is that prior academic performance can be used as a predictor of academic success in undergraduate architecture programmes. Overall, the developed k-NN model can serve as a valuable tool during the process of selecting new intakes into undergraduate architecture programmes in Nigeria.
  • 关键词:Academic achievement, architecture students, classification, k-NN, prior academic performance, selection criteria
国家哲学社会科学文献中心版权所有