首页    期刊浏览 2024年12月05日 星期四
登录注册

文章基本信息

  • 标题:What the collapse of the ensemble Kalman filter tells us about particle filters
  • 本地全文:下载
  • 作者:Matthias Morzfeld ; Daniel Hodyss ; Chris Snyder
  • 期刊名称:Tellus A: Dynamic Meteorology and Oceanography
  • 电子版ISSN:1600-0870
  • 出版年度:2017
  • 卷号:69
  • 期号:1
  • DOI:10.1080/16000870.2017.1283809
  • 摘要:Abstract The ensemble Kalman filter (EnKF) is a reliable data assimilation tool for high-dimensional meteorological problems. On the other hand, the EnKF can be interpreted as a particle filter, and particle filters (PF) collapse in high-dimensional problems. We explain that these seemingly contradictory statements offer insights about how PF function in certain high-dimensional problems, and in particular support recent efforts in meteorology to ‘localize’ particle filters, i.e. to restrict the influence of an observation to its neighbourhood.
  • 关键词:ensemble Kalman filter ; particle filter ; collapse of particle filters
国家哲学社会科学文献中心版权所有