首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:On Long Words Avoiding Zimin Patterns
  • 本地全文:下载
  • 作者:Arnaud Carayol ; Stefan G{\"o}ller
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:66
  • 页码:19:1-19:13
  • DOI:10.4230/LIPIcs.STACS.2017.19
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:A pattern is encountered in a word if some infix of the word is the image of the pattern under some non-erasing morphism. A pattern p is unavoidable if, over every finite alphabet, every sufficiently long word encounters p. A theorem by Zimin and independently by Bean, Ehrenfeucht and McNulty states that a pattern over n distinct variables is unavoidable if, and only if, p itself is encountered in the n-th Zimin pattern. Given an alphabet size k, we study the minimal length f(n,k) such that every word of length f(n,k) encounters the n-th Zimin pattern. It is known that f is upper-bounded by a tower of exponentials. Our main result states that f(n,k) is lower-bounded by a tower of n-3 exponentials, even for k=2. To the best of our knowledge, this improves upon a previously best-known doubly-exponential lower bound. As a further result, we prove a doubly-exponential upper bound for encountering Zimin patterns in the abelian sense.
  • 关键词:Unavoidable patterns; combinatorics on words; lower bounds
国家哲学社会科学文献中心版权所有